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CALCULATION OF THE THERMAL CONDUCTIVITY OF DENSE 

REAL GASES AND THEIR MIXTURES 

V. R. Kamenetskii UDC 536.23 

A procedure is proposed for calculating the thermal-conductivity coefficients of 
compressed gases and their mixtures; the real first density correction is intro- 
duced into the Enskog equation with allowance for the contribution of the internal 
degrees of freedom of the molecules. 

In the calculation of the thermal conductivities of compressed real gases serious diffi- 
culties have been incurred to date by the lack of a rigorous and reliable transport theory 
for dense systems. 

The only theoretically justified mathematical expression is the well-known Enskog equa- 

tion [I] 

I 
~/Zo . . . . .  ]- 1.2 bp + 0,7554 (b~•  (i) 

which is exceedingly difficult to apply to real gases. The reason for this difficulty lies 
in certain specifics of the rigid-spheres model on which the Enskog theory is based (only 
pairwise collisions are taken into account, and forces of mutual attraction are disregarded), 
as well as in the restrictions and assumptions inherent in that model (the molecular-chaos 
hypothesis, approximate allowance for "screening" of molecules, etc.). 

In addition, Eq. (I) describes only the translational part of the thermal conductivity, 
i.e., the part associated with translational motion of the molecules. In principle, there- 
fore, it cannot be applied to polyatomic gases, whose thermal conductivity is largely deter- 
mined by the presence of molecular internal degrees of freedom. 

In the present study we attempt to modify the Enskog equation so that it can be used to 
calculate reliable values of the thermal conductivity of dense real gases and their mixtures. 
It is reasonable to speculate that tO treat the attractive forces ignored by the original 
model as a perturbation in the system of rigid spherical molecules will result in a substan- 
tially more realistic version of the Enskog equation. We note that the attractive forces are 
felt primarily at moderate densities and to a lesser extent at high densities. 

The latter consideration justifies the inclusion of mutual attraction only insofar as 
it influences the linear term of the expansion of the thermal conductivity in powers of the 

density: 

where 8 is the so-called first density correction, which takes into account the contribution 

of ternary collisions [2]. 
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TABLE i. Calculation of X for CH4 at t = 43.6"C and 
p = 239.2 atm 

z/k, K 
T* 

Galc. per Refer- Value 
Quantity determined equation ence 

[14] 
[14] 

-~0" l&, cal/em~,see- nK 

~1.10 ~, g /em.sec  

~'o" 107' eal/em .see . 'K 

p, mole/em s 
o 

d , A  
b, em~/mole 

bp 

y 
z ~ 

M 

bo, em3/mole 
V, era3/mole 
~. I0 r, cal /em .see �9 *K 
kex. tU, cal /cm -see- ~ 

Error, % 

(8) 
(8) 

(11) 

(1o) 
(m) 

(9) 
(12) 

02) 
(7) 

lgl 
I9! 

I91 

[9l 

3,77 
15l ,0 

2,098 
886 

1178 

1,62 
1,62 
O,OlO~ 

3,7t5 
64,68 

O, 6662 
2,0555 
2,0555 
t, 584 

67,59 
80,71 

1533 
!540 

0,45 

Assuming that the internal degrees of freedom do not depend on the intermolecular dis- 
tance, we can express the thermal conductivity as the sum of the contributions from transla- 
tional and internal degrees of freedom [3, 4] : 

I n  t h e  g i v e n  c a s e  i t  i s  p r a c t i c a l  t o  c a l c u l a t e  X' a c c o r d i n g  t o  t h e  E n s k o g  e q u a t i o n ,  r e p l a c i n g  
t h e  q u a n t i t y  fl = 0 . 5 7 5 b  t h e r e i n  by  t h e  r e a l  t e m p e r a t u r e  f u n c t i o n  B ' ( T ) ,  w h i c h  r e p r e s e n t s  t h e  
t r a n s l a t i o n a l  p a r t  o f  t h e  f i r s t  d e n s i t y  c o r r e c t i o n  a n d  t a k e s  i n t o  a c c o u n t  t h e  i n f l u e n c e  o f  
a t t r a c t i o n  on t h e  t h e r m a l  c o n d u c t i v i t y  o f  a m o d e r a t e l y  d e n s e  g a s  [ 2 ] :  

)~ '=~, i  [--l z -i-~'(T)p~-O,625bpq-O.7554(bp)Z• ] .  (3) 

Here, according to [2 5] ~'=~It-~-~A*(Cp~ A, : ~(=.=)*/~(1.1)* where The value 
' ' L ;,~, / j  \ R 2 ' " 

of X" estimated on the basis of notions concerning the diffusion nature of energy transport 
by the internal degrees of freedom [6] is 

it otW 
where within the framework of the stated assumption C v = C v 
cient, according to the Enskog theory, is 

O,=Do/• 
From (4) and (5) we readily obtain ~3, 4] 

z" z~/• -- ( ~ - - z ~ ) / •  

Substituting (3) and (6) into 
ductivity: 

where 

(4) 

, and the self-diffusion coeffi- 

(5) 

(6) 

(2), we arrive at the following equation for the thermal con- 

. . . .  i (l ~' + 0.625 b) p .  0,7554 (bp) 2 • (7 )  

.... 11o, 6 == Xo,Z~. (8 )  
4 m 
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TABLE 2. Compare,on of Calculated and Ex, 
perimental [9] Values of ~ for CH, (i07 
cal/cm~ at t - 43.6"C 

p, atm Calculated Experimental ~, % 

I1,5 
21,4 
69,1 

120, I 
171,1 
273,2 
341,2 
407,6 
463,7 
518,1 
573,9 

90t, 1 
914,3 
995,4 

l l l 2  
1260 
t588 
1810 
1974 
2133 
2269 
2~12 

888 
913 

1010 
I ~74 
1298 
1653 
1833 

i 1940 
2072 
2170 

! 2274 

1.5 
O,l 

- - I  ,4 
--5,3 
--2.9 
--3,9 
--1,3 

1,7 
3,0 
4,6 
6.1 

The thermal conductivities of gases are calculated according to Eq. (7) by the following 
scheme. 

The initial data are the thermal conduetivities and viscosities of the rarefied gas 
(p + 0) and the density of the compressed gas for the particular state parameters of interest. 
Relations (8) are used to determine %~ and the parameter ~. The value of the radial distri- 
bution ~unction at distance d from the center of the individual molecule is calculated in 
terms of the compressibility of a system of rigid spheres: 

z = (z m - -  1)/bp, b = __2 a n d 3  ' (9)  
3 

which, in turn, can be determined from the simple Carnahan-- Starling equation of state [7], 
which is the one most commonly used today: 

zm 1-~  y + y 2 y S  
= ( I 0 )  1__y3 

in which y = x/s~da0 = X/~bp. The most important aspect of the given procedure (as, of course, 
in any computations involving the rigid-spheres model) is the correct choice of diameter d of 
the rigid sphere. 

An investigation has shown that the best results are obtained by determining d according 
to the Barker--Henderson relation [8] 

d = f {I - -  exp [ - -  u (r) /kT]} dr, 
0 

which is well approximated by the equation [13] 

1 
0.3837 + 1.068 - - -  

d/a - -  T* 
0 . 4 2 9 3 @ 1 / T *  (11)  

For the determination of ~'(T) we use the following relation derived in [2]: 

lg ~'* = 0.47 + 1.59 !g I /T*  -~ 1.26 (lg 1/T*) z q- 0,37 (Ig 1/T*) ~, (12) 

in which 

~,,  =: ~,/bo; bo 2 ~N~s; T* = kT/~ ,  
3 

and which is valid in the interval 0.35 ~ T* ~ 40. For the calculation of ~ in the case of 
dense binary gas mixtures good results are obtained with effective values B~ = Nxixj~ij and 
b m = ~xixjbij. For practical computations we recommend using the temperature-dependent ef- 
fective potential parameters o(T) and s(T), the technique for the determination of which is 
described in detail in [Ii, 12]. 

Moreover, detailed tables of these parameters covering a wide range of temperatures for 
bulk quantities of substances are given in [14]. The indicated parameters are particularly 
well suited to calculations of the thermal conductivities of mixtures, because the simple 
combination rules X/2(~ i 

I 
= + oj) and eij = (r [14] used to determine 8 m and b m ~ij 
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TABLE 3. Comparison of Calculated and Ex- 
perimental [i0] Values of k for Mixture 
3H2--N= (i0 ~ W/m-~ at T = 298.250K 

p, bar Experimental  

6,0 
50,7 

i01,3 
202 ,~ 
303,9 
405,2 

Calcula ted 

1142 ll40 
1165 1170 
1189 1180 
1240 1230 
1289 1280 
t340 1320 

1!60 
1t80 
1200 
1250 
1290 
1330 

can be applied to them with full justification. The procedure described here has been tested 
on a large array of experimental data on the thermal conductivitles of nitrogen, argon, car- 
bon dioxide, steam, methane, hydrogen, propane, isobutane, ethylene, n-octane, ammonia, three 
nitrogen--hydrogen mixtures, and two hydrogen--ethylene mixtures. 

The average error of the calculations is • and the maximum error does not exceed 7%. 
Table i gives as an illustration the results of a sample calculation of the thermal conduc- 
tivity of methane gas at a temperature of 43.6=C and pressure of 239.2 atm. The results of 
the calculations af k for CH4 at other pressures on the same isotherm are compared with the 
experimental data of [9] in Table 2. The calculated and experimental [I0] values of % for a 
dense gas mixture 3H2--N2 at T ~ 298.25~ are given in Table 3. 

The foregoing results evince good reliability on thepart of Eq. (7) for describing the 
thermal-conductivity coefficients of dense real gases and their binary mixtures over a wide 
range of state parameters. 

NOTATION 

%, thermal conductivity of compressed +gas; %o, thermal conductivity of rarefied gas; %', 
X", contributions of translational and internal degrees of freedom to thermal conductivity 

11 
of the compressed gas; %~, %o, contributions of translational and internal degrees of freedom 
to thermal conductivity of the rarefied gas; ~o, viscosity of rarefied gas; p, density; ~, 
value of radial distribution function at distance d from center of molecule; d, diameter of 
model rigid sphere; D, self-diffusion coefficient; C$, internal specific heat; m, molecular 
mass; b, four times proper volume of molecules; z rs, compressibility coefficient of system 
of rigid spheres; ~(2.2),, ~(1.1),, collision integrals used in calculating the thermal con- 
ductivities and diffusion coefficients, respectively; u(r), potential energy of molecular in- 
teraction; T*, reduced temperature; o, ~, parameters of Lennard-Jones (12, 6) potential; xi, 
mole fraction of i-th component of mixture. 
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